First evidence of pep solar neutrinos by direct detection in Borexino I

arXiv:1110.3230v1 to appear in PRL

Alvaro E. Chavarria, Princeton University Borexino Collaboration

Outline

- Solar neutrinos.
- The Borexino Detector.
- ¹¹C background suppression.
- Other backgrounds.
- Fitting strategy.
- Results.
- Future prospects.

Solar Neutrinos

p-p Solar Fusion Chain $p + p \rightarrow {}^{2}H + e^{+} + v_{e}$ $p + e^{-} + p \rightarrow {}^{2}H + v_{e}$ pp Solar Fusion Chain $p + p \rightarrow {}^{2}H + p \rightarrow {}^{3}He + \gamma$ $p + p \rightarrow {}^{2}H + e^{+} + \gamma_{e} \quad p + e^{-} + p \rightarrow {}^{2}H + \gamma_{e}$ ³He + ³He \rightarrow ⁴He ²H²t^p \rightarrow ³He \neq ³He \neq ⁴He + e + ν_{e} ³He + ⁴He \rightarrow ⁷Be + γ ³He + ³He \rightarrow ⁴He + 2 p ³He + p \rightarrow ⁴He + e⁺ + v_e ⁷Be + e⁻ \rightarrow ⁷Li ³He + $\sqrt{^{4}}$ He \rightarrow **B**e + γ ⁸B + γ $^{8}B \rightarrow 2 \alpha + e^{+} + v_{e}$ ⁷Li + p $\rightarrow \alpha$ + α Dominant fusion mechanism in the Sun

CNO Cycle

Related to solar metallicity Important in larger stars Contribution in Sun ?

Solar Neutrinos

Solar Standard Model predicted v fluxes

Reaction	Abbr.	Flux (cm ^{-2} s ^{-1})	_
$pp \rightarrow d e^+ \nu$	pp	$5.97(1 \pm 0.006) \times 10^{10}$	-
$pe^-p ightarrow d u$	pep	$1.41(1 \pm 0.011) \times 10^{8}$	Small
${}^{3}\mathrm{He}p \rightarrow {}^{4}\mathrm{He}e^{+}\nu$	hep	$7.90(1 \pm 0.15) imes 10^3$	uncertainties
$^7\text{Be}~e^- \to {^7\text{Li}}~\nu + (\gamma)$	$^{7}\mathrm{Be}$	$5.07(1 \pm 0.06) imes 10^9$	
$^8\mathrm{B} \to {}^8\mathrm{Be}{}^*~e^+\nu$	^{8}B	$5.94(1 \pm 0.11) imes 10^{6}$	
$^{13}\mathrm{N} \rightarrow ^{13}\mathrm{C} \ e^+ \nu$	^{13}N	$2.88(1 \pm 0.15) \times 10^8$	Large
$^{15}\mathrm{O} \rightarrow ^{15}\mathrm{N} \ e^+ \nu$	¹⁵ O	$2.15(1^{+0.17}_{-0.16}) \times 10^{8}$	uncertainties
$^{17}\mathrm{F} ightarrow ^{17}\mathrm{O}~e^+ u$	17 F	$5.82(1^{+0.19}_{-0.17}) \times 10^{6}$	

Tension between High and Low Metallicity SSMHigh Z SSM (GS) \rightarrow older model, higher heavy elementabundances, agrees with helioseismologyLow Z SSM (AGS) \rightarrow new model based on solar atmosphericspectroscopy, lower heavy element abundances, does not agreewith helioseismology5

Solar Neutrino Propagation

- Solar neutrinos (v_e) undergo **oscillation**
- Interaction with **matter** can affect oscillation (Wolfenstein)
- The oscillation probability can be enhanced by a resonance (**M**ikheyev & **S**mirnov)
 - Energy Dependent Survival Probability Pee
- If SSM predicts v flux with high precision \rightarrow probe neutrino oscillations

MSW Oscillation Regimes

In these regimes, P_{ee} depends only on θ_{12} , not on the mass splitting or the details of the neutrino-matter interaction

Solar Neutrino Propagation

MSW-LMA scenario: current understanding of solar neutrino oscillation

Physics beyond Standard Model can affect Energy dependence of Pee

Solar Neutrino and Astrophysics wish list

- Particle physics:
 - Test **MSW-LMA** P_{ee} with high accuracy
 - Probe the Pee in the transition region, sensitive to Physics beyond Standard Model
- Solar Astrophysics:
 - Test SSM predictions, prove CNO cycle in Sun
 - Test two competing models of SSM: High and Low Metallicity

Solar pep and CNO vs

pep reaction, part of the proton-proton chain, at a rate ~1/400 of pp reaction:

 $p + e^- + p \longrightarrow d + v$ (1.44 MeV)

~3 cpd/100 tons

<u>CNO cycle</u>, alternate energy production mechanism in the Sun ν from ¹³N (E_{max} = 1.20 MeV) ν from ¹⁵O (E_{max} = 1.74 MeV)

~3 - 5 cpd/100 tons

pep V measurement motivations

pep neutrino **flux predicted** with **high precision**: 1.2% SSM uncertainty

pep neutrino energy (1.44 MeV) in P_{ee} transition region, sensitive to Physics beyond the Standard Model

Allows for more **stringent tests** of oscillation models

CNO v measurement motivations

Detecting CNO ν prove that CNO cycle happens in Sun

Abundance of heavy elements in Sun have high impact on CNO ν flux magnitude

Test of High vs Low Z SSM

Serenelli, Haxton, Pena-Garay arXiv 1104.1639	CNO FLUX (10 ⁸ cm ⁻² s ⁻¹)
HIGH Z SSM	5.24 ± 0.84
LOW Z SSM	3.76 ± 0.60
ΔΦ	28%

Borexino Detector Design based on principle of graded shielding In LNGS, 3800 m.w.e. overburden

Exterior instrumented water tank (Cherenkov detector)

Stainless Steel Sphere with ~2200 PMTs

898 tons of quenched scintillator as buffer

278 tons of active scintillator

Fiducial Mass ~ 75 tons

Borexino Detector

Neutrinos are detected through elastic scattering on electrons

Recoiling electrons excite scintillator molecules which emit light

-41 91

Scintillation light is detected by photomultiplier tubes

Amount and timing of light give energy and position information

Backgrounds

No directional information from scintillation light

Cannot discriminate between electron recoils and β/γ backgrounds

Need unprecedented low levels of background

Background	Source	Typical Concentration	Borexino Levels (per scintillator mass)	Reduction Method
¹⁴ C	Scintillator	10 ⁻¹² g/g	10 ⁻¹⁸ g/g	Underground Source
238	Dust	10 ⁻⁵ g/g (Dust)	10 ⁻¹⁸ g/g	Purification
²³² Th	Dust	10 ⁻⁵ g/g (Dust)	10 ⁻¹⁸ g/g	Purification
⁸⁵ Kr	Air	10 ⁷ cpd/ton (Air)	0.3 cpd/ton	LAKN
⁴⁰ K	PPO	10 ⁻⁶ g/g (Dust)	<10 ⁻¹⁹ g/g	Purification
²¹⁰ Po	²¹⁰ Pb	10 ⁶ cpd/ton (Water)	20 cpd/ton	Purification
²¹⁰ Bi	²¹⁰ Pb	10 ⁶ cpd/ton (Water)	0.4 cpd/ton	Purification

Detector Calibration Study position and energy reconstruction by deploying radioactive sources throughout active volume Laser Diffuser Tether Pivot for AmBe Source off-axis Insertion deployment Rods **Source Vial**

Steve Hardy (Thesis)

β Energy Scale determination

Number of photoelectrons / E for sources at the center

Use MonteCarlo to obtain effective Y quenching due to multiple electron scatters Use Birk's model for electron quenching

Result independent of source position (< 0.5% difference in quenching)

Solar Neutrino Spectroscopy

arXiv: 1104.1816

Purification \rightarrow Low background rates High light yield \rightarrow High Energy resolution Calibration \rightarrow Detector response understood

pep and CNO neutrino measurement

- More **challenging** than ⁷Be v measurement
- Low rates: few interaction per day/100tons
- Dominant **background** in pep energy region:
 - β+ emitter cosmogenic ^{II}C (27 cpd/100tons)
- Adoption of **novel techniques** to suppress ¹¹C:
 - Three Fold Coincidence
 - e+/e- pulse shape discrimination

I C background

- β + emitter with Q-value = 1.98 MeV. Starts past the ⁷Be V energy region (~1 MeV) and spans the pep + CNO v regions.
- ^{II}C rate in the scintillator is 28.5 ± 0.7 cpd/100 tons (~I0x pep rate).
- Produced by spallation processes on ¹²C nuclei by cosmogenic µs. Neutron production correlated with ¹¹C.
- Free neutrons captured by H in scintillator after thermalization ($\tau = \sim 255 \ \mu s$, 2.2 MeV capture- γ).

Detecting cosmogenic neutrons

- Borexino electronics are not good for fast rate of events after cosmic rays: boards saturate, energy of the events is degraded to the point where often even clusters are missed.
- Detecting cosmogenic neutrons is <u>crucial</u> for ^{II}C suppression.
- In 2007 I installed 500 MHz single channel DAQ system to see cosmogenic neutrons. Triggered by the muon veto.
- System has proven very useful to characterize main DAQ response, count neutrons efficiently and observe very high multiplicity events.
- Also the parent of the Borexino Supernova Alarm System.

4000 μ/day 70 produce n

Example of high multiplicity event ~1375 neutrons after μ detected (capture time $\sim 255 \ \mu s$) Coinciding with neutron burst, we have a burst of ~100 events in ¹¹C energy region within the next hours (^{II}C lifetime is 29 min)

Spatial correlation

Lower multiplicity event

Track of the parent μ

Neutrons within I.6 ms after µ

¹¹C candidates within 2 h after μ

Clear spatial correlation!

Three-fold coincidence

- We can take advantage of the time + space correlation between cosmogenic neutrons and ¹¹C decays to effectively decrease the ¹¹C background.
- We perform vetoes in space and time regions after µ + n coincidences to preferentially select regions with decreased ¹¹C background.
- Rely on position reconstruction of the cosmogenic neutrons and the track reconstruction of the parent muon.

Removed 91% of ¹¹C, keeping 48.5% exposure ¹¹C rate: 27 → 2.5 counts/day/100tons

Energy spectrum in FV

e⁺/e⁻ Pulse Shape Discrimination

Reconstructed emission time relative to cluster start time

Delayed time distribution of e⁺ respect to e⁻ scintillation signals [Phys. Rev. C 83, 0105504]

e⁺/e⁻ Pulse Shape Discrimination

Pulse shape of ¹¹C events different from electron recoils and β⁺ decays:
Finite lifetime of Ortho-Positronium (50% cases, 3ns)
Multi-site event topology

e⁺/e⁻ Pulse Shape Discrimination

Optimized **p**ulse **s**hape parameter built using **B**oosted **D**ecision **T**ree algorithm

External Y-ray background

Decay of contaminants in detector **peripheral** structure

²⁰⁸TI, ²¹⁴Bi from PMTs, Stainless Steel Sphere ...

Fiducial Volume: minimize penetration of γ-rays,

without sacrificing too much exposure

External Y-ray background

Energy spectra and **space distribution** from full Geant4-based Monte Carlo **simulation**

Simulation validated with **calibration** data:

High activity external ²²⁸Th source

Short-lived cosmogenics

Verified to be reliable to ~10% in ⁸B analysis. Used to estimate ¹¹Be rate.

Isotope	Q-value (E_{γ})	Residual rate	Residual differential rate at 1.22 MeV
	MeV	cpd/100tons	$\rm cpd/100 tons/MeV$
n	(2.22)	< 0.005	0
$1^{12}B$	13.4	$(7.1 \pm 0.2) \times 10^{-5}$	$(2.49 \pm 0.07) \times 10^{-6}$
⁸ He	10.6	0.004 ± 0.002	$(2.6 \pm 1.2) \times 10^{-4}$
⁹ C	16.5	0.020 ± 0.006	$(1.6 \pm 0.5) \times 10^{-3}$
⁹ Li	13.6	0.022 ± 0.002	$(1.4 \pm 0.1) \times 10^{-3}$
⁸ B	18.0	0.21 ± 0.05	0.017 ± 0.004
⁶ He	3.5	0.31 ± 0.04	0.15 ± 0.02
⁸ Li	16.0	0.31 ± 0.05	0.011 ± 0.002
¹¹ Be	11.5	0.034 ± 0.006	$(3.2 \pm 0.5) \times 10^{-3}$
$^{10}\mathrm{C}$	3.6	0.54 ± 0.04	0
⁷ Be	(0.48)	0.36 ± 0.05	0
pep ν	1. 22 MeV	$\boxed{2.80{\pm}0.04}$	2.30 ± 0.03

Considering 300 ms veto after cosmic muons

²¹⁰Bi Internal Background

²¹⁰Bi largest **background** in pep/CNO energy region

²¹⁰Bi and CNO vs energy spectra are **similar CNO** solar neutrino spectroscopy is **tough**

Fitting Strategy

- Binned likelihood fit.
- Consider:
 - energy distribution
 - radial distribution
 - pulse shape distribution
- Fit to both spectrum of TFC-subtracted and TFC-vetoed events.

Species in the fit

Species	Rate free or fixed	Common to both spectra	In PS-BDT fit	In radial dist. fit
pep ν	free	Yes	β^{-}	Bulk
CNO νs	free	Yes	β^{-}	Bulk*
⁷ Be ν	free	Yes	β^{-*}	Bulk*
$pp \nu$	fixed to $133 \text{ cpd}/100t$	Yes	β^{-*}	Bulk*
$^{8}\mathrm{B} \nu$	fixed to $0.46 \text{ cpd}/100t$	Yes	β^{-}	Bulk
214 Pb	fixed to $1.95 \text{ cpd}/100t$	Yes	β^{-}	Bulk*
²¹⁰ Bi	free	Yes	β^{-}	Bulk*
$^{10}\mathrm{C}$	free	No	β^+	Bulk
¹¹ C	free	No	β^+	Bulk
Ext. 214 Bi	free	Yes	β^{-}	External
Ext. 40 K	free	Yes	β^{-}	External
Ext. 208 Tl	free	Yes	β^{-}	External
⁶ He	free	No	β^{-}	Bulk
40 K	free	Yes	β^{-}	Bulk
85Kr	free	Yes	β^{-*}	Bulk*
234mPa	free	Yes	β^{-}	Bulk

* Effectively excluded due to energy range pp and ⁸B neutrinos fixed to expected values ²¹⁴Pb fixed to value from ²¹⁴BiPo coincidences

Results

pep interaction rate

3.1 ± 0.6_{stat} counts/day/100ton

CNO interaction rate

Assuming MSW-LMA

Upper limit (95% C.L.) <7.I_{stat only} counts/day/ 100ton

pep fixed at SSM
predicted value:
2.8 counts/day/
100ton

Systematic Uncertainties

- Fit stability under change of certain parameters (e.g. fit range, binning).
- Fit stability for different exposure.
- Event energy estimated by either number of PMTs hit or total charge of the event.
- Uncertainty in the spectral shape of the components.
- Statistical uncertainty in pulse shape parameter fitting PDFs.

Systematic Uncertainties

- Effect associated with γ-rays present in pulse shape distributions.
- Uncertainty in total exposure.
- Uncertainties in fixed rates (pp, ⁸B, ²¹⁴Pb).
- Exclusion of short-lived cosmogenics and decays from ²³²Th chain.

Total systematic uncertainty in pep rate: 10% Increase of 0.8 counts/day/100ton in CNO limit

Background Results

Backgrounds in agreement with expectations

Summary of results

ν	Interaction rate	Solar- ν flux	Data/SSM
	$[\text{counts}/(\text{day}{\cdot}100\text{ton})]$	$[10^8 \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	ratio
pep	$3.1\pm0.6_{ m stat}\pm0.3_{ m syst}$	1.6 ± 0.3	1.1 ± 0.2
CNO	$< 7.9 \ (< 7.1_{\rm statonly})$	< 7.7	< 1.5

Solar flux assuming MSW-LMA Ratio of High Metallicity SSM

CNO flux limit 1.5 times High Z prediction Results consistent with MSW-LMA and SSM

Absence of solar neutrino signal ruled out at 99.97% C.L.

Survival probability

 v_{e} survival probability

No oscillation hypothesis disfavored at 97% C.L.

Borexino Phase II

- Since July, 2010 we have undertaken a series of purification campaigns to decrease radioactive backgrounds.
- Nitrogen stripping has been successful at removing ⁸⁵Kr. No evidence since January.
- Moderate success at removing ²¹⁰Pb(Bi) by Water Extraction.
- Operations on-going and hope to decrease ²¹⁰Bi significantly and possibly ²¹⁰Po.
- Decrease of ²¹⁰Po may be necessary to obtain an independent estimate of ²¹⁰Bi contamination and a more precise measurement of CNO v rate [arXiv:1104.1335v1].

Conclusion

- We have successfully decreased the dominant background, ¹¹C, by a factor of 10.
- We have performed a multivariate fit to measure for the first time pep solar neutrinos and place the strongest constraint on the CNO solar neutrino flux.
- Results are consistent with SSM + MSW-LMA.
- The future is promising.

THE END

Astroparticle and Cosmology Laboratory – Paris, France INFN Laboratori Nazionali del Gran Sasso – Assergi, Italy INFN e Dipartimento di Fisica dell'Università – Genova, Italy INFN e Dipartimento di Fisica dell'Università-Milano, Italy INFN e Dipartimento di Chimica dell'Università – Perugia, Italy Institute for Nuclear Research – Gatchina, Russia Institute of Physics, Jagellonian University – Cracow, Poland Joint Institute for Nuclear Research – Dubna, Russia Kurchatov Institute – Moscow, Russia Max-Planck Institute fuer Kernphysik – Heidelberg, Germany Princeton University – Princeton, NJ, USA Technische Universität – Muenchen, Germany University of Massachusetts at Amherst, MA, USA University of Moscow – Moscow, Russia Virginia Tech – Blacksburg, VA, USA University of Hamburg – Hamburg, Germany

Backup Slides

The Solar Neutrino Problem

Neutrino Oscillations

- Producing a neutrino in a flavour eigenstate produces a superposition of mass eigenstates
- Phase differences acquired in mass eigenstate propagation change apparent flavor content
- In solar neutrinos we see a phase averaged survival probability:

$$P_{ee} = \cos^4(\theta_{13}) \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \right) + \sin^4(\theta_{13}) \sim \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \right) \qquad (\theta_{13} = 0)$$

Oscillation probabilities for an initial electron neutrino

Borexino Data

e⁺/e⁻ Pulse Shape Distribution

Easiest to understand by looking at one of the highest ranked of 36 variables

Well reproduced by full Monte Carlo

Shift in peak position due to difference in event topology

Tail in e^+ distribution due to increasing Δt of ortho-positronium event.

External Y background

Well fit in both energy and spatial distribution Reliable result from multivariate fit

²¹⁰Bi - CNO v Correlation

Residual spectrum

Fitting

- Find the maximum of the likelihood to obtain central value.
- Use likelihood ratio tests to calculate $\Delta \chi^2$ and the uncertainties.

MonteCarlo Test of Fitting

- Produce data-like samples from best fit result.
- Test that mean values and uncertainties from the fit are consistent with input.
- Obtained distribution of best-fit likelihood values to determine the p-value of our fit to real data to be 0.3.